Методические указания
№1 – Прямое преобразование солнечной энергии в электрическую. Исследование фотоэлектрического преобразователя энергии – солнечной батареи
Категория: | Методические указания |
Дисциплина: | Основы энергосбережения |
Город: | Беларусь, Минск |
Учебное заведение: | БНТУ, ФИТР |
Стоимость работы: | бесплатный |
Оценка: | 10 |
Объем страниц: | 7 |
Год сдачи: | 2020 |
Дата публикации: | 20.10.2020 |
Фрагменты для ознакомления
Лабораторная работа № 1
ПРЯМОЕ ПРЕОБРАЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ. ИССЛЕДОВАНИЕ ФОТОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ ЭНЕРГИИ - СОЛНЕЧНОЙ БАТАРЕИ
Цель работы: изучить принцип преобразования солнечной энергии в электрическую. Исследовать основные технические характеристики фотоэлектрической батареи.
Общие сведения
Солнце является основным источником энергии, обеспечивающим существование жизни на Земле. Вследствие реакций ядерного синтеза в активном ядре Солнца достигаются температуры до 107 К. При этом поверхность Солнца имеет температуру около 6000 К. Электромагнитным излучением солнечная энергия передается в космическом пространстве и достигает поверхности Земли. Вся поверхность Земли получает от Солнца мощность около 1,2×1017 Вт. Это эквивалентно тому, что менее одного часа получения этой энергии достаточно, чтобы удовлетворить энергетические нужды всего населения земного шара в течение года. Максимальная плотность потока солнечного излучения, приходящего на Землю, составляет примерно, 1 кВт/м2. Для населенных районов в зависимости от места, времени суток и погоды потоки солнечной энергии меняются от 3 до 30 МДж/м2 в день.
В среднем для создания комфортных условий жизни требуется примерно 2 кВт энергетической мощности на человека или примерно 170 МДж энергии в день. Если принять эффективность преобразования солнечной энергии в удобную для потребления форму 10 % и поток солнечной энергии 17 МДж/м2 в день, то требуемую для одного человека энергию можно получить со 100 м2 площади земной поверхности. При средней плотности населения в городах 500 человек на 1 км2 на одного человека приходится 2000 м2 земной поверхности. Таким образом, достаточно всего 5 % этой площади, чтобы за счет снимаемой с нее солнечной энергии удовлетворить энергетические потребности человека.
Для характеристики солнечного излучения используются следующие основные величины.
Поток излучения – величина, равная энергии, переносимой электромагнитными волнами за одну секунду через произвольную поверхность. Единица измерения потока излучения – Дж/с = Вт.
Плотность потока излучения (энергетическая освещенность) – величина, равная отношению потока излучения к площади равномерно облучаемой им поверхности. Единица измерения плотности потока излучения – Вт/м2.
Плотность потока излучения от Солнца, падающего на перпендикулярную ему площадку вне земной атмосферы, называется солнечной константой S, которая равна 1367 Вт/м2.
Световой поток. Световым потоком называется поток излучения, оцениваемый по его воздействию на человеческий глаз. Человеческий глаз неодинаково чувствителен к потокам света с различными длинами волн. Обычно при дневном освещении глаз наиболее чувствителен к свету с длиной волны 555 нм. Поэтому одинаковые по мощности потоки излучения, но разных длин волн вызывают разные световые ощущения у человека. Единицей измерения светового потока с точки зрения восприятия его человеческим глазом (яркости) является люмен (лм). Световой поток в 1 лм белого света равен 4,6×10-3 Вт (или 1 Вт = 217 лм).
Освещенность – величина, равная отношению светового потока, падающего на поверхность, к площади этой поверхности. Освещенность измеряется в люксах (лк). 1 лк = 1 лм/м2. Для белого света 1 лк = 4,6×10-3 Вт/м2 (или 1 Вт/м2 = 217 лк).
Приборы, предназначенные для измерения освещенности, называются люксметрами.
Освещенность, создаваемая различными источниками
Источники | Освещенность, лк | Освещенность, Вт/м2 |
Солнечный свет в полдень (средние широты) | 100000 | 460 |
Солнечный свет зимой | 10000 | 46 |
Облачное небо летом | 5000-20000 | 23-92 |
Облачное небо зимой | 1000-2000 | 4,6-9,2 |
Рассеянный свет в светлой комнате (вблизи окна) | 100 | 0,46 |
Светильники, создающие необходимую для чтения освещенность | 30-50 | 0,14-0,23 |
Полная Луна, облучающая поверхность Земли | 0,2 | 0,92×10-3 |
В связи с большим потенциалом солнечной энергии чрезвычайно заманчивым является максимально возможное непосредственное использование ее для нужд людей.
При этом самым оптимальным представляется прямое преобразование солнечной энергии в наиболее распространенную в использовании электрическую энергию.
Это становится возможным при использовании такого физического явления, как фотоэффект.
Фотоэффектом называются электрические явления, происходящие при освещении вещества светом, а именно: выход электронов из металлов (фотоэлектрическая эмиссия или внешний фотоэффект), перемещение зарядов через границу раздела полупроводников с различными типами проводимости (p–n) (вентильный фотоэффект), изменение электрической проводимости (фотопроводимость).
При освещении границы раздела полупроводников с различными типами проводимости (p–n) между ними устанавливается разность потенциалов (фотоЭДС). Это явление называется вентильным фотоэффектом, и на его использовании основано создание фотоэлектрических преобразователей энергии (солнечных элементов и батарей).
Наиболее распространенным полупроводником, используемым для создания солнечных элементов, является кремний.
Солнечные элементы характеризуются коэффициентом преобразования солнечной энергии в электрическую, который представляет собой отношение максимальной электрической мощности вырабатываемой элементом, к падающему потоку излучения. Кремниевые солнечные элементы имеют коэффициент преобразования 10-15 % (т.е. при освещенности 1 кВт/м2 вырабатывают электрическую мощность 1-1,5 Вт) при создаваемой разности потенциалов около 1 В.
Типичная структура солнечного элемента с p–n–переходом изображена на рис. 1.1 и включает в себя: 1 – слой полупроводника (толщиной 0,2–1,0 мкм) с n‑проводимостью; 2 – слой полупроводника (толщиной 250–400 мкм) с p‑проводи–мостью; 3 – добавочный потенциальный барьер (толщиной 0,2 мкм); 4 – металлический контакт с тыльной стороны; 5 – соединительный проводник с лицевой поверхностью предыдущего элемента; 6 – противоотражательное покрытие; 7 – лицевой контакт; 8 – соединительный проводник к тыльному контакту следующего элемента. Характерный размер солнечного элемента 10 см.

Рис. 1.1. Структура солнечного элемента
Солнечные элементы последовательно соединяются в солнечные модули, которые в свою очередь параллельно соединяются в солнечные батареи, как изображено на рис. 1.2.

Рис. 1.2. Э – солнечный элемент; М – солнечный модуль; Б – солнечная батарея
В 1958 г. впервые солнечные батареи были использованы в США для энергообеспечения искусственного спутника Земли Vanguard 1. В последующем они стали неотъемлемой частью космических аппаратов.
Широко известны микрокалькуляторы, часы, радиоприемники и многие другие электронные аппараты, работающие на солнечных батареях.
Основные компоненты солнечной энергетической установки изображены на рис. 1.3 и включают в себя: Б – солнечную батарею с приборами контроля и управления; А – аккумуляторную батарею; И – инвертор для преобразования постоянного тока солнечной батареи в переменный ток промышленных параметров, потребляемый большинством электрических устройств.

Рис. 1.3. Солнечная энергетическая установка
Несмотря на неравномерность суточного потока солнечного излучения и его отсутствие в ночное время, аккумуляторная батарея, накапливая вырабатываемое солнечной батареей электричество, позволяет обеспечить непрерывную работу солнечной энергетической установки.
Экспериментальная установка (рис. 1.4) включает в себя: 1 – солнечный модуль, состоящий из 36-ти (9´4) солнечных элементов; 2 – амперметр и 3 – вольтметр для определения напряжения и силы тока, вырабатываемых солнечным модулем; 4 – источник света, имитирующий солнечное излучение; 5 – люксметр для определения освещенности поверхности солнечного модуля; 6 – реостат, представляющий собой регулируемую нагрузку в электрической цепи.
Экспериментальная установка

Рис. 1.4. Схема экспериментальной установки
Порядок выполнения работы
а) Исследование характеристик холостого хода солнечного элемента
- Удостовериться, что нагрузка на солнечный модуль отсоединена.
- Измерить ширину а (м) и высоту b (м) рабочей поверхности солнечного модуля и определить ее площадь S = ab, м2.
- Установить источник света на прямое излучение на поверхность солнечного модуля (нулевая отметка на лимбе источника).
- Включить источник света.
- Люксметром измерить освещенность в центре и четырех крайних точках поверхности солнечного модуля (Ец, Е1, Е2, Е3, Е4) и определить ее среднее значение (Еср), полученные результаты занести в табл. 1.1.
- По показаниям вольтметра определить ЭДС, вырабатываемую солнечным модулем при положении источника света – 0 градусов по лимбу.
- Проделать аналогичные измерения при косом падении излучения на поверхность модуля, поворачивая источник света на 10, 20, 30, 40, 50 градусов по лимбу.
- Определить плотность потока излучения Еэн (энергетическую освещенность), используя соотношения между лк и Вт/м2; для белого света Еэн = 4,6×10-3Еср.
- Определить поток излучения Физл, из определения плотности потока излучения Еэн следует Физл = Еэн S Вт, полученный результат занести в табл. 1.2.
- Определить ЭДС-1 – ЭДС, вырабатываемая одним солнечным элементом, равная отношению ЭДС на количество элементов, из которых состоит солнечный модуль. Полученные результаты занести в табл. 1.1.
- Построить график зависимости ЭДС солнечного модуля от плотности потока излучения, падающего на его поверхность Еэн.
Таблица 1.1
Результаты измерений и вычислений
Угол падения излучения, градус | Ец, лк | Е1, лк | Е2, лк | Е3, лк | Е4, лк | Еср, лк | ЭДС, В | Еэн, Вт/м2 | ЭДС-1, В |
0 |
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
20 |
|
|
|
|
|
|
|
|
|
30 |
|
|
|
|
|
|
|
|
|
40 |
|
|
|
|
|
|
|
|
|
50 |
|
|
|
|
|
|
|
|
|
б) Определение вольтамперной характеристики солнечного модуля
1. Подключить нагрузку (реостат) к цепи солнечного элемента.
2. Установить источник света на прямое излучение на поверхность солнечного модуля (нулевая отметка на лимбе источника).
3. Включить источник света. По показаниям вольтметра определить напряжение в цепи U. По показаниям амперметра определить ток в цепи I.
4. Перемещая подвижный контакт реостата, изменить сопротивление нагрузки в цепи и выполнить измерения U и I. Провести измерения 6 раз в пределах от минимального до максимального значения сопротивления нагрузки.
5. Для каждого измерения вычислить электрическую мощность в цепи N=I×U.
6. Все данные занести в табл. 1.2.
7. Построить вольтамперную характеристику (график зависимости I от U) солнечного модуля при данной плотности потока излучения, значение которой взять из предыдущей серии измерений.
8. Отметить наибольшее значение мощности (Nmax), вырабатываемой солнечным модулем и рассчитать коэффициент преобразования (см. таблицу).
Таблица 1.2
Результаты измерений и вычислений

Контрольные вопросы по лабораторной работе № 1