Методические указания

№1 – Прямое преобразование солнечной энергии в электрическую. Исследование фотоэлектрического преобразователя энергии – солнечной батареи

Категория:

Методические указания

Дисциплина:

Основы энергосбережения

Город:

Беларусь, Минск

Учебное заведение:

БНТУ, ФИТР

Стоимость работы:

бесплатный

Оценка: 10
Объем страниц: 7
Год сдачи: 2020
Дата публикации: 20.10.2020

Фрагменты для ознакомления

Лабораторная работа № 1

ПРЯМОЕ ПРЕОБРАЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ. ИССЛЕДОВАНИЕ ФОТОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ ЭНЕРГИИ - СОЛНЕЧНОЙ БАТАРЕИ

 

Цель работы: изучить принцип преобразования солнечной энергии в электрическую. Исследовать основные технические характеристики фотоэлектрической батареи.

 

Общие сведения

Солнце является основным источником энергии, обеспечивающим существование жизни на Земле. Вследствие реакций ядерного синтеза в активном ядре Солнца достигаются температуры до 107 К. При этом поверхность Солнца имеет температуру около 6000 К. Электромагнитным излучением солнечная энергия передается в космическом пространстве и достигает поверхности Земли. Вся поверхность Земли получает от Солнца мощность около 1,2×1017 Вт. Это эквивалентно тому, что менее одного часа получения этой энергии достаточно, чтобы удовлетворить энергетические нужды всего населения земного шара в течение года. Максимальная плотность потока солнечного излучения, приходящего на Землю, составляет примерно, 1 кВт/м2. Для населенных районов в зависимости от места, времени суток и погоды потоки солнечной энергии меняются от 3 до 30 МДж/м2 в день.

В среднем для создания комфортных условий жизни требуется примерно 2 кВт энергетической мощности на человека или примерно 170 МДж энергии в день. Если принять эффективность преобразования солнечной энергии в удобную для потребления форму 10 % и поток солнечной энергии 17 МДж/м2 в день, то требуемую для одного человека энергию можно получить со 100 м2 площади земной поверхности. При средней плотности населения в городах 500 человек на 1 км2 на одного человека приходится 2000 м2 земной поверхности. Таким образом, достаточно всего 5 % этой площади, чтобы за счет снимаемой с нее солнечной энергии удовлетворить энергетические потребности человека.

Для характеристики солнечного излучения используются следующие основные величины. 

Поток излучения – величина, равная энергии, переносимой электромагнитными волнами за одну секунду через произвольную поверхность. Единица измерения потока излучения – Дж/с = Вт.

Плотность потока излучения (энергетическая освещенность–  величина, равная отношению потока излучения к площади равномерно облучаемой им поверхности. Единица измерения плотности потока излучения – Вт/м2.

Плотность потока излучения от Солнца, падающего на перпендикулярную ему площадку вне земной атмосферы, называется солнечной константой S, которая равна 1367 Вт/м2.

Световой поток. Световым потоком называется поток излучения, оцениваемый по его воздействию на человеческий глаз. Человеческий глаз неодинаково чувствителен к потокам света с различными длинами волн. Обычно при дневном освещении глаз наиболее чувствителен к свету с длиной волны 555 нм. Поэтому одинаковые по мощности потоки излучения, но разных длин волн вызывают разные световые ощущения у человека. Единицей измерения светового потока с точки зрения восприятия его человеческим глазом (яркости) является люмен (лм). Световой поток в 1 лм белого света равен 4,6×10-3 Вт (или 1 Вт = 217 лм). 

Освещенность  величина, равная отношению светового потока, падающего на поверхность, к площади этой поверхности. Освещенность измеряется в люксах (лк). 1 лк = 1 лм/м2. Для белого света 1 лк = 4,6×10-3 Вт/м2 (или 1 Вт/м2 = 217 лк).

Приборы, предназначенные для измерения освещенности, называются люксметрами.

Освещенность, создаваемая различными источниками

Источники

Освещенность, лк

Освещенность, Вт/м2

Солнечный свет в полдень (средние широты)

100000

460

Солнечный свет зимой

10000

46

Облачное небо летом

5000-20000

23-92

Облачное небо зимой

1000-2000

4,6-9,2

Рассеянный свет в светлой комнате (вблизи окна)

100

0,46

Светильники, создающие необходимую для чтения освещенность

30-50

0,14-0,23

Полная Луна, облучающая поверхность Земли

0,2

0,92×10-3

В связи с большим потенциалом солнечной энергии чрезвычайно заманчивым является максимально возможное непосредственное использование ее для нужд людей.

При этом самым оптимальным представляется прямое преобразование солнечной энергии в наиболее распространенную в использовании электрическую энергию.

Это становится возможным при использовании такого физического явления, как фотоэффект.

Фотоэффектом называются электрические явления, происходящие при освещении вещества светом, а именно: выход электронов из металлов (фотоэлектрическая эмиссия или внешний фотоэффект), перемещение зарядов через границу раздела полупроводников с различными типами проводимости (p–n) (вентильный фотоэффект), изменение электрической проводимости (фотопроводимость).

При освещении границы раздела полупроводников с различными типами проводимости (p–n) между ними устанавливается разность потенциалов (фотоЭДС). Это явление называется вентильным фотоэффектом, и на его использовании основано создание фотоэлектрических преобразователей энергии (солнечных элементов и батарей).

Наиболее распространенным полупроводником, используемым для создания солнечных элементов, является кремний.

Солнечные элементы характеризуются коэффициентом преобразования солнечной энергии в электрическую, который представляет собой отношение максимальной электрической мощности вырабатываемой элементом, к падающему потоку излучения. Кремниевые солнечные элементы имеют коэффициент преобразования 10-15 % (т.е. при освещенности 1 кВт/м2 вырабатывают электрическую мощность 1-1,5 Вт) при создаваемой разности потенциалов около 1 В.

Типичная структура солнечного элемента с p–n–переходом изображена на рис. 1.1 и включает в себя: 1 – слой полупроводника (толщиной 0,2–1,0 мкм) с n‑проводимостью; 2 – слой полупроводника (толщиной 250–400 мкм) с p‑проводи–мостью; 3 – добавочный потенциальный барьер (толщиной 0,2 мкм); 4 – металлический контакт с тыльной стороны; 5 – соединительный проводник с лицевой поверхностью предыдущего элемента; 6 – противоотражательное покрытие; 7 – лицевой контакт; 8 – соединительный проводник к тыльному контакту следующего элемента. Характерный размер солнечного элемента 10 см.

Рис. 1.1. Структура солнечного элемента 

Солнечные элементы последовательно соединяются в солнечные модули, которые в свою очередь параллельно соединяются в солнечные батареи, как изображено на рис. 1.2.

Рис. 1.2. Э – солнечный элемент; М – солнечный модуль; Б – солнечная батарея

В 1958 г. впервые солнечные батареи были использованы в США для энергообеспечения искусственного спутника Земли Vanguard 1. В последующем они стали неотъемлемой частью космических аппаратов. 

Широко известны микрокалькуляторы, часы, радиоприемники и многие другие электронные аппараты, работающие на солнечных батареях.

Основные компоненты солнечной энергетической установки изображены на рис. 1.3 и включают в себя: Б – солнечную батарею с приборами контроля и управления; А – аккумуляторную батарею; И – инвертор для преобразования постоянного тока солнечной батареи в переменный ток промышленных параметров, потребляемый большинством электрических устройств.

Рис. 1.3. Солнечная энергетическая установка

Несмотря на неравномерность суточного потока солнечного излучения и его отсутствие в ночное время, аккумуляторная батарея, накапливая вырабатываемое солнечной батареей электричество, позволяет обеспечить непрерывную работу солнечной энергетической установки. 

Экспериментальная установка (рис. 1.4) включает в себя: 1 – солнечный модуль, состоящий из 36-ти (9´4) солнечных элементов; 2 – амперметр и 3 – вольтметр для определения напряжения и силы тока, вырабатываемых солнечным модулем; 4 – источник света, имитирующий солнечное излучение;  5 – люксметр для определения освещенности поверхности солнечного модуля; 6 – реостат, представляющий собой регулируемую нагрузку в электрической цепи.

Экспериментальная установка

Рис. 1.4. Схема экспериментальной установки

Порядок выполнения работы

а) Исследование характеристик холостого хода солнечного элемента

  1. Удостовериться, что нагрузка на солнечный модуль отсоединена. 
  2. Измерить ширину а (м) и высоту (м) рабочей поверхности солнечного модуля и определить ее площадь S ab, м2.
  3. Установить источник света на прямое излучение на поверхность солнечного модуля (нулевая отметка на лимбе источника). 
  4. Включить источник света. 
  5. Люксметром измерить освещенность в центре и четырех крайних точках поверхности солнечного модуля (Ец, Е1, Е2, Е3, Е4) и определить ее среднее значение (Еср), полученные результаты занести в табл. 1.1.
  6. По показаниям вольтметра определить ЭДС, вырабатываемую солнечным модулем при положении источника света – 0 градусов по лимбу.
  7. Проделать аналогичные измерения при косом падении излучения на поверхность модуля, поворачивая источник света на 10, 20, 30, 40, 50 градусов по лимбу.
  8. Определить плотность потока излучения Еэн (энергетическую освещенность), используя соотношения между лк и Вт/м2; для белого света Еэн = 4,6×10-3Еср.
  9. Определить поток излучения Физл, из определения плотности потока излучения Еэн  следует Физл = Еэн S Вт, полученный результат занести в табл. 1.2.
  10. Определить ЭДС-1 – ЭДС, вырабатываемая одним солнечным элементом, равная отношению ЭДС на количество элементов, из которых состоит солнечный модуль. Полученные результаты занести в табл. 1.1.
  11. Построить график зависимости ЭДС солнечного модуля от плотности потока излучения, падающего на его поверхность Еэн.

Таблица 1.1

Результаты измерений и вычислений

Угол

 падения излучения, 

градус

Ец,

лк

Е1,

лк

Е2,

лк

Е3,

лк

Е4,

лк

Еср,

лк

ЭДС,

В

Еэн,

Вт/м2

ЭДС-1,

В

0

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

б) Определение вольтамперной характеристики солнечного модуля

1. Подключить нагрузку (реостат) к цепи солнечного элемента. 

2. Установить источник света на прямое излучение на поверхность солнечного модуля (нулевая отметка на лимбе источника).

3. Включить источник света. По показаниям вольтметра определить напряжение в цепи U. По показаниям амперметра определить ток в цепи I.

4. Перемещая подвижный контакт реостата, изменить сопротивление нагрузки в цепи и выполнить измерения U и I. Провести измерения 6 раз в пределах от минимального до максимального значения сопротивления нагрузки. 

5. Для каждого измерения вычислить электрическую мощность в цепи N=I×U.

6. Все данные занести в табл. 1.2.

7. Построить вольтамперную характеристику (график зависимости I от U) солнечного модуля при данной плотности потока излучения, значение которой взять из предыдущей серии измерений.

8. Отметить наибольшее значение мощности (Nmax), вырабатываемой солнечным модулем и рассчитать коэффициент преобразования (см. таблицу).

Таблица 1.2

Результаты измерений и вычислений

Контрольные вопросы по лабораторной работе № 1

1. Цель лабораторной работы и объект исследования.

2. Основные величины, характеризующие солнечное излучение.

3. Какова температура поверхности Солнца?

4. Каким образом энергия Солнца достигает поверхности Земли?

5. Поток излучения, единицы измерения.

6. Плотность потока излучения, единицы измерения.

7. Световой поток, единицы измерения.

8. Освещенность, единицы измерения освещенности. Приборы для измерения освещенности.

9. На каком явлении основано действие фотоэлектрических преобразователей энергии?

10. Фотоэффект, виды фотоэффекта.

11. Физический смысл коэффициента преобразования солнечной энергии в электрическую.

12. Какие основные компоненты должна содержать солнечная энергетическая установка?

13. Области применения солнечных батарей.

14. Основные элементы экспериментальной установки и их назначение.

15. Методика исследования характеристики холостого хода солнечного элемента.

16. Как зависит ЭДС солнечного модуля от плотности потока излучения, падающего на его поверхность?

17. Методика определения вольтамперной характеристики солнечного модуля.

266